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t. Laboratoire Louis Nkel, 38042 Grenoble Cedex, France 
0 AT&T Bell Laboratories, Murray Hill, NJ 07974, USA 

Received 28 December 1990 

Abstract.The analogy between magnetic froth (cellulardomain patterns ingarnet films) and 
the two-dimensional soap froth is used to develop an elementary model for the former 
system. Simulations are performed using this model: they have many features in common 
with recent experimental results and can be further illuminated by simple calculations in the 
spirit of mean-field theory. An analysis of topological cell statistics is also presented. 

1. Introduction 

Among the various patterns exhibited by the magnetic domain structure of garnet films, 
cellular domains present a particularly fascinating example of the interplay between 
energetics, kinetics and geometrical/topological constraints. They have been observed 
for some time (e.g. Wolfe and North 1974), but have only recently been the object of 
detailed observation and statistical analysis (Babcock and Westervelt 1989a, b, 1990, 
Babcock et al1990). Broadly similar observations were made by Molho and described 
by Glazier (1989); some of these, together with new results for cell areas, are presented 
here. Experimental details are recorded in Appendix A .  

Cellulardomainscan be createdasanordered hexagonal array or, more interestingly, 
as a disordered structure in which the cells have different areas and numbers of sides. 
Examples are shown in figure 1. As this figure illustrates, the structure coarsens when 
the applied magnetic field is gradually increased. This coarsening process proceeds by 
the progressive elimination of small cells. 

The striking similarity of these patterns to those of the two-dimensional soap froth 
was recognized at an early stage: figure 2 shows such a structure for comparison. This 
has led us to use the name ‘magnetic froth’ for the system of magnetic domains (Weaire 
1989). Not only are the two structures similar, but there is an obvious analogy between 
the coarsening of the magnetic froth, as a function of magnetic field, and that of the soap 
froth, as a function of time. The underlying mechanism is, of course, rather different, 
but in both cases we are effectively dealing with an evolving equilibrium structure. In 
themagnetic froth, increasing themagnetic field causes the pattern to coarsen, favouring 
the direction of magnetization represented as white in figure 1. In the soap froth, there 
is slow diffusion of gas between cells, so the cell areas can be regarded as fixed by a 
slowly varying constraint. 
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Figure 1. Typical magnetic froth: for experimental details. see Appendix A.  The structure 
i s  seen to coarsen as the magnetic field H is increased through the following seouence of 
values: 0,54.1,70.5,85,2,91.5,9.1.8Oe. .. . 

This analogy invites closer attention. The soap froth is now very well understood 
(see, e.g., Glazier eta1 1987, Weaire and Lei 1990), and a proven methodology exists 
for the simulation of equilibrium structure and its coarsening (Kermode and Weaire 
1990,Glazieretul1990). Thisprovidesanobviousstartingpoint foranattempt to frame 
an elementary model for magnetic froth. We adopt such a strategy here, defining such 
a model and identifyingsome of its properties, by simulation and by various calculations 
in the spirit of mean-field theory. Before doing so we shall present some relevant 
experimental data, supplementing the extensive results and of Babcock and co-workers 
mentioned above. 

2. Magnetic froth 

As figure 1 shows, the cell walls in magnetic froth are thick, relative to mean cell size, 
for low magnetic field H (in this case H 5 30 Oe). so there are nearly circular magnetic 
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Figure 2. Two-dimensional soap froth, as simulated by Kermode and Weaire (1990). 

2000 

0 D O  

0 
0 20 4 0  60 80 100 Figure 3. Cell density in magnetic froth 

as a function of applied magnetic field H, 
excluding cells at the edge of the sample. 

4000L 
H (04 

bubbles. Soap froths of relatively high liquid fraction have just this character (Weaire 
and Bolton 1990), but we shall not pursue the analogy in this limit. For higher magnetic 
fields, the cell walls are thin and there are clearly defined polygonal cells. Babcock and 
co-workers made a further distinction, between the intermediate regime and that close 
to the maximum value of H ,  at which cell density goes to zero, as shown in figure 3. The 
latter wascalled the 'high-tension' regime. In the intermediate regime, n-sided cells with 
n < 5 (ofwhich thereareveryfew,incomparisonwithsoapfroths) areeliminatedduring 
the early stages of coarsening. Thereafter it is five-sided cells that are eliminated. One 
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Figure* Mean areaA.ofn-sidedcells(in 
pixels). as a function of applied magnetic 
field H. 

of the distinguishing features of the high-tension regime is the onset of avalanches of 
cell eliminations, for which Babcock and Westervelt (1990) have presented extensive 
statistics. 

The intermediate regime is characterized in the data of Babcock and Westervelt 
(1989b) by a distributionf(n) of numbers of sides of cells that is remarkably constant, 
so the topological structure remains approximately invariant while the mean area 
increases by almost two orders of magnitude. The data of Molho forf(n) are slightly 
different. and will be discussed in a subsequent section. Figure 4 shows the variation of 
mean area of cells of different types, which has not previously been measured. 

We shall now adapt the essentially exact model for soap froth to develop an approxi- 
mate model for the magnetic froth, in which there are long-range interactions. 

3. Model for magnetic froth 

We shall first review the essential features of the idealized model of the two-dimensional 
soap froth. Considering first the case in which liquid cell walls enclose a compressible 
gas, this is described by the Hamiltonian, for constant total area: 

i 
E = Z U C : ~  + BC ( A ~  -A# .  (1) 

The first sum is over all cell sides i. giving the total cell wall length, to be multiplied by 
a surface energy (tension) parameter 20.. The second term arises from the compression,’ 
expansion of the gas in which cell: usually the limit of infinite B (i.e. incompressible gas) 
is taken so that the second term is removed and replaced by the constraint A, = Afl, 
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where Aio is the area of cell jfor gas of constant density. The problem of equilibrating 
such model structures for the soap froth, such as that of figure 2, then boils down to the 
assignment of vertex coordinates and cell pressures, such that: 

(i) the cell walls have curvatures that balance pressure differences 

where rjr is the radius of curvature of the cell side between adjoining cells j and j'. It 
might benotedhere that,despite thegeneralvisualsimilarityofsoapfrothsandmagnetic 
froths, a close examination of the latter will reveal cell edges whose curvature is not 
constant. Clearly, OUI model will fail to capture this feature. 

(ii) the curved cell walls meet at 120" at each vertex (equilibrium of surface tension). 
(iii) the appropriate area constraints Ai = Ajo are satisfied. 

Most of this description and the associated methodology may be generalized to any 
Hamiltonian of the form 

E = A 22 ii + F ( A ~ ,  A ~ ,  . . .) (3) 
i 

consisting of a 'line energy' term together with any function of cell areas on/y 
The equilibrium conditions are (a) 

Apf = A/riT 

where now Apjf = p ,  - pr and 

(4) 

and (b) vertex angles are 120", as before. 
What form, consistent with (3), is most appropriate for the magnetic froth? Domain 

wall energy contributes straightforwardly to the line energy term. The applied or bias 
field Hcontributes a term proportional to linelength multiplied by the wall thickness, wf,  
which we shall treat as constant throughout the system. Hence increase of H is to be 
identified with increase of A,  although the zeros of the two quantities are not the same. 
Not only will we make this assumption but we shall also assume that the wall thickness 
w does not change with H.  This appears to be a reasonable approximation only in the 
intermediate regime, as discussed below. In any case, a simple correction can be made 
for the variation of w with H .  Finally we are left with the depolarization energy-the 
dipolar interaction energy of the system-which we shall force into the form of a 
line energy term, as above, and a simple function of cell areas. This is a somewhat 
hypothetical approximation, as explained in Appendix B. We argue that the depo- 
larization contribution to the second term may be written as 

i if 

where the first sum is over aU cells j ,  the second over nearest-neighbour pairs jj' and so 
on. It may not be reasonable or practical to extend this series beyond the terms indicated. 
We shall first consider a model that retains only the single-cell term, and that will prove 
to be inadequate in certain respects. It will transpire that ?he addition of the two-cell 
terms improves matters considerably. 
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As explained in Appendix B, the proposed forms for F, and F2 are 

F1(Ai)  = ( A j  + G ' - ' I 2  

(absorbing any constant into the definition of A), and 
(7) 

F2(Aj ,A , . )  = K ~ ( A ,  + C)'P(A,. + C) ' /2 / [ (A ,  + C)lh + (A,. + C)'"I3. (8) 
Here K* is of order unity, and Cis a short-range cut-off parameter (deriving from the 
finite wall thickness). Without such a cut-off, cells would not be forced to disappear as 
A is increased. I n  what follows, the properties of this model are explored without any 
attempt being made at this stage to match numerical values to those of experiment, 
which will be a difficult exercise. 

4. First-order model 

We shall first examine the model defined by equations (3), (6) and (7). While we shall 
ultimately be forced to revise this primitive model, some of the insights gained are quite 
general. 

We begin by addressing the question posed by figure 4 within the present model: 
how do mean cell areas vary with increasing A? We do so by applying a mean-field 
approximation, surrounding an n-sided cell by n neighbouring cells each of which has 
area equal to the average over all cells, Amcan. We shall also assume equality of pressure 
in the surrounding cells, so that the central cell under consideration is symmelric. By 
considering the geometry of such asymmetricalcell we can relate the radius of curvature 
r,,, to the area of the cell, A .  The pressure difference is obtained via the derivative of the 
first-order energy term (equations (5) and (7)) of the cell and its mean-field neighbours. 
The equilibrium condition (4) now takes the form (in the case C = 0, for convenience): 

(9) 2c,AA-1'2 = A-3n - A-3E 
mean 

The constants c, may be calculated straightforwardly from the area and pressure dif- 
ference associated with a symmetric n-sided cell, and are negative/positive for n 5 6 ,  
and zero for n = 6 .  Note that this implies that the predicted value for a six-sided cell, A,, 
equals A,,,,, within this approximation. An elementary but cumbersome expression for 
c, is easily derived: it is well approximated by c. = 0.28(n - 6). 

For low values of A, there is always a solution A ,  (in fact more than one for n C 6:  
the stable solution is the one with higher A).  However. this is not the case, whenever a 
finitecut-off parameter Cisincluded. AsA is increased, thesolutionsfor three, four and 
five-sidedcellscease toexist at critical valuesofA: ineach case there is a minimum value 
of A,, (see figure 5 ) .  

In a typical disordered network. three- and four-sided cells are not essential and they 
can be eliminated entirely, with minimal readjustments. However, when we consider 
the elimination of five-sided cells, the (Euler) requirement, that the mean value of n is 
exactly six, dictates otherwise. The elimination of individual five-sided cells cannot be 
expected to reduce the population of such cells to zero unless the system orders itself in 
the hexagonal structure, which is unlikely. Hence we expect an approach to a steady 
state in whichf(n) remains invariant. 

For any given initial value of A,,,., consider its subsequent variation with A. We 
encounter (after a slight increase of A,,,,, due to elimination of three- and four-sided 
cells) a critical value of A at which five-sided cells are typically unstable, due to loss of 
the solution of (9). Removal of some such cells increases A,,,. and this change in cell 
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3 4 : ,b2 ~ 0.4 0.6 O S  1.0 . .  

-1.0 1 
FigureS. Logarithmofcell areaA,asobtained by Figure6. Bejond the point ofinstabilityoffivefold 
solving(Y) forA,settingAm.,.(=Aa) = LOand celisin figure 5 .  A..,. (= A,)should vary asshown 
the cut-off parameter C = 1.0. Three., four- and here (condition of marginal stability). The 
five-sidedcells bccome unstable at the pointsindi- resulting variations of As, A,, A*, A9 are also 
cated, for this value of A". shown. The trajectories labelled 3 and 4 give the 

loci ofunstabiliry ofthree-and four-sided celis(cf 
figure 5). That labelled S denotes the estimated 
point of the 'spinodal instability', discussed in the 
teut,asafunctionofA,,,.andA. 

density is eventually sufficient to stabilize the remainder, for any given increment of A .  
According to this argument, A,,, is determined by the condition that the typical fivefold 
cell remains on the margin of stability. This condition of marginal stability can be used 
to specify A,,,, for each value of h. It follows that the C U I V ~ S  of figure 5 are irrelevant 
beyond the point at which the typical five-sided cell is unstable, and we should expect to 
follow those of figure 6, dictated by marginal stability. Note, in particular, the increase 
of A,,,, (coarsening) and its eventual divergence. This occurs at the point at which five- 
sided cells are typically unstable even at zero density. 

It is tempting to try to relate the analytic behaviour of A,,,. to the scaling analysis 
performed byBabcocketal(1990). but there areanumberofcomplicationsindoingso. 
In particular, it is our impression that the result of the above authors ( n  - (H - Hc)2.9) 
relates neither to the intermediate regime (in which we know that the structure is 
invariant) orto the trueasymptoticregime(inwhichdataaresparse) but fitsthecrossover 
between them, and may not have fundamental significance. 

The variation of the areas of n-sided cells with A (shown in figure 6) seem broadly 
consistent with the qualitative form of the data of figure 4. Note that the area differences 
A, - A,,,, are approximately proportional to c,, for n > 6, at least initially. 

Having explored the implications of our model in this approximate way, we now turn 
to direct simulations based upon it. A simulation based on the first-order model was 
carried out for a disordered structure with initial mean cell area A,,,, = 6.8 and C = 
0.4. Initially, this showed the expected features, including elimination of three- and 
four-sided cells, as A was increased (figure 7). Elimination of triples and pairs of five- 
sided cells should then proceed at critical values of A. The expected limiting value at 
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(C) 
Figure7. Simulation test of the firstorder model. 
with initial Ammo = 6.75, C =  0.4, showing an 
instability (separation info regions of large and 
small cells) at A = 1.2. Resuk arc shown for 1. = 
0.06.0.36,1.23. 

(C) 
Figure S. Simulation lest of the second-ordcr 
model, with K * = I ,  A,,,,=2.6, and C=l.O. 
Resullsarcshown iorh = 0.01,0.19.0.50. 

which cell density vanishes is expected to be A = 1.7, based on the earlier arguments of 
this section, for C = 0.4. However, at about A = 1.2, the structure was found to develop 
a global instability (figure 7(c)) which has no counterpart in experiment for which data 
are presented here. Something similar does occur when the sample is held at high 
temperatures, close to the N6el point (see figure 65 of Glazier 1989). 

We have been able to understand this behaviour within our model as an analogue of 
spinodal decomposition: the system becomes unstable with respect to separation into 
regions of large and small cells. The estimated locus of this instability is shown in figure 
6, suggesting that it cannot be avoided by change of parameters. It may be controlled by 
changing the form of F,, since the instability is related to the second derivative of this 
function. However, it seems more reasonable to proceed to the second-order model, 
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Figure 9. Variation of A, with A in the second- 
order model simulation. All areas are divided by 
the initial ( A  = 0) mean cell area. 
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n 
Figure 10. The distribution f (n) ofnumbersolcellsides for variousvaluesofi. in the second- 
order model simulation. 

which tends to suppress the instability. In any case, it is evident from the analysis of 
appendix A that the second-order corrections are large. 

5. Second-order model 

We have assigned the value .K* = 1 in the second-order term defined by (8). This is 
somewhat arbitrary (see Appendix B) but should be of the right order. Back-of-envelope 
estimates suggested that the system thus defined should not be subject to the spinodal 
instability prior to the instability of all five-sided cells. This hope was fulfilled: figure 8 
presents some structures obtained with this model. Note first that within a mean-field 
theory, the qualitative expectations are quite Similar to those of the first-order model, 
so we have not repeated that analysis. 

We succeeded in following the evolution of this structure over the full range of k ,  In 
one sense, the results are disappointing, in relation to experiment: the system changes 
from the behaviour that we illustrated by figure 5 to that of figure 6, as expected, but its 
coarsening behaviour is already dominated by avalanches, so no smooth coarsening is 
observed. The corresponding area variations are shown in figure 9. The relative areas 
of n-sided cells, as observed in experiment (figure 4), are quite well reproduced. 
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Figure 11. Avalanche of cell eliminations. Attention is drawn to the locations of local 
topological changes by the superimposed ellipses. The sequence takes the structure from 
that of figure 8(b) to that of figure S(c), upon a small increment of A at A = 0.49. 

Some examples of the cell side distribution functionf(n) are also shown in figure 10, 
which are in quite good agreement with experimental data (Babcock et al 1990). For 
further discussion of this distribution, see section 6 .  

The avalanches seem to have the same character as those observed by Babcock and 
Westervelt (1990). Figure 11 shows an avalanche that eliminates ten cells. It represents 
the transition from figure 8(b) to (c). It would be most interesting to extend such cal- 
culations to much larger samples, in order to accumulate better statistics. Experience 
with the soap froth program would suggest that samples of lo" cells could be handled 
easily, but limitations of resources have kept the calculations presented here at a modest 
level. 

6. Topological analysis 
Although present results for the coarsening behaviour of the model are inadequate to 
show anydetailedcorrespondence to theevolutionofmagneticfroth,it isveryreassuring 
that the distribution functionf(t7) corresponds quite closely to that of experiment. 
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Figure 12. Observed variation off(5) with applied magne:icfield H. 

Figure 13. ( a )  Topological process: disappearance of a five-sided cell. The numbers indicate 
the change of number of sides of each neighbouring cell. (b )  Disappearance of a four-sided 
cell (created by the process shown in (0 ) )  

In this section we shall comment further on the formf(n), using a purely topological 
analysis. 

The observed invariance of f(n) over two decades of cell density, reported by 
Babcockelal(l990), was not preciselyreproduced in the experimental studiesdescribed 
here. However, it would appear that, in the relevant regime (roughly that described as 
‘intermediate’ in section 2), f (5) increases, as shown in figure 12, toward the value found 
to be invariant in the earlier work. (This value was stated to be 0.20 but the published 
data suggest that any value in the range 0 .2M.25  might be inferred.) 

It would thus appear that, while much depends on the starting conditions, as one 
might expect, there is indeed a steady state, towards which the network tends in this 
regime. Let us therefore consider the effect of elimination of individual five-sided cells, 
as described above. 

Topologically, such an event proceeds as shown in figure 13(a). The outcome shown 
is unique (apart from rotation or reversal of the external cell edges). We assume that a 
steadyf(n) is reached by the repeated occurrence of this process, after which it does 
not, on average, change f (n) .  In order to express this, we must make assumptions 
regarding the neighbours of a disappearing five-sided cell, in relation to figure 13(a). We 
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make the most elementary assumptions: thatthe neighboursare (on average) distributed 
according tof(n) itself, and that the individual values of n do not correlate with the 
outcomes shown in the figure. Both points require some justification. 

Firstly, the assumption of the distribution f(n) appears to contradict the Aboav- 
Weaire correlation, which implies that the neighbours of five-sided cells have a mean fi  
norequal to 6, the mean off(n). However, the argument being advanced applies not to 
all five-sided cells but to five-sided cells on the point of disappearance, which will tend 
to be surrounded bycellssomewhat smaller than theaverage. Thisarguesforacorrection 
in the opposite sense and, in the absence of a deeper analysis, the stated assumption 
seems best. In any case the suggested corrections are small. 

Secondly, the assumption of random assignment of outcome seems a bold one, but 
Babcock and Westervelt (1989b) specifically assert that they could find no rule for such 
assignments in observing a sample of individual events. 

We shall apply the steady-state condition firstly to the population of five-sided cells. 
Elimination of a five-sided cell by the process under consideration directly removes one 
such cell, and creates/removes others by virtue of the effect upon neighbours. In 
particular the subtraction of one side from a neighbouring five-sided cell creates a four- 
sided cell that is unstable, and must be eliminated by the process shown in figure 13(6). 
We shall make the same assumptions regarding this process as for that of figure 13(a), 
decoupling the statistics of the two events. Since we may now subtract one side from a 
further five-sided cell, there is a possible cascade of cell eliminations. On the above 
assumptions the total number of cells eliminated is 

1 + 2f(5)(1 + Z f ( 5 ) .  . .) = 1/(1 - Zf(5)). (10) 

For steady state, the elimination of this number of cells must change the number of five- 
sided cells by 

AfQ)  = -f(s)/(l - 2f(5)). (11) 

(12) 

Enumerating the various outcomes tbat contribute to Af(5) we have 

-1 + 2f(6) - 3f(5) + 7-f(5)(2f(6) - 2f(5))/(1 - zf(5)) = -f@)/(l - Zf(5)) 

or 

Suppose we assume thatf(n) = 0 for n > 7. Then,requiringf(n) to be normalized to 
unity, and to have the (Euler) mean value 6, 

f(5) + f(6) + f(7) = 1 (14) 

f(5) = f(7). (15) 

f(5) = - f(6)) (16) 

Hence 

wbichmaybeused,inconjunctionwith(13), todeterminef(5). Theresultisf(5) = 0.29 
(=f(7)), f(6) = 0.42 (and second moment p 2  = 0.58), in good agreement with the 
experimental values. However, it should be noted that this was obtained by using a 
rather arbitrary assumption, thatf(n) goes to zero so rapidly that we may neglectf(n) 
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for n > 7. One may instead write a similar equation for general n ,  and proceed to solve 
it, but some additional assumption would be needed to specify a solution. (The Euler 
and normalization conditions are automatically satisfied.) 

7. Conclusions 

The approximate model based on the soap froth and the statistical argument of the last 
section provide a promising framework for the understanding of cellular domains in 
magnetic froth. 

Problems for further consideration include the simulation of the ‘melting’ of ordered 
domains and the associated phase diagram, as well as the detailed description of the 
regime close to the limiting magnetic field, at which the wall width goes to zero. This has 
multiple effects, not easily analysed: appropriate simulations may help. However, the 
latter will be hindered by the ‘avalanche’ character of coarsening in this regime, making 
the gathering of adequate numerical data difficult. 

It should be emphasized that simulations within this model can be pursued within 
much larger samples than were presented here, probably in excess of lo3 cells. Limi- 
tations of time and resources confined the present work to an exploratory study. 
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Appendix A. Experimental details 

The experimental data reproduced here were obtained using a monocrystalline film of 
the ferrimagnetic garnet (YLuBi),(FeGa),012 provided by LETI-CENG, Grenoble. 
The film thickness was 5.33 pm and the stripe width in zero field was 5.50pm. Other 
material parameters were as follows: magnetization, 188 G; Curie temperature, 130 “C; 
characteristic length (wall energy densitydivided by magneticenergy density), 0.63 pm. 

Pictures of domain patterns of size (7-11) x lo4 pm2 were processed as 640 X 480 
pixels. The experimental conditions were as follows. The pictures shown in figure 1 were 
obtained at room temperature with no AC field superimposed on the bias field. (For the 
significance of applied AC field see Babcock and Westervelt (1989b).) For the data of 
figures 3,4 and 12, an AC field of amplitude 3 Oe was superimposed and the pixel size is 
0.3625 pm2/pixel. 

Appendix B. Mathematical background 

In this Appendix, we consider the dependence of the magnetic dipolar energy on the 
structure of the cellular domain network. In this network, regions of ‘up’ magnetization 
are contained incells bonded by thin wallsof ‘down’ magnetization. We treat these walls 
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Figure 14. Dissection of cell network into separated cells. 

as1ines.h whichcaseit iseasy toshow that thedipolarinteractionenergymaybe written 
as 

where the double integral is over the cell wall network. However, this integral diverges, 
and it isnecessary tointroduce ashort-rangecut-off at r = Ar tosuppress thisdivergence. 
With such a cut-off, the integral I for a single cell, approximated by a circle of radius r ,  
may be determined analytically; for small Ar it is given by 

?c n h r  n r  
16r Sr 4r 2Ar2' 

I =  ----log-+- 

For small Ar thismay be furthcr approximated the sum of two positive terms proportional 
to rand r-' respectively. We have made the further assumption of identifying these two 
termswith the linelength and inversesquare root of area respectively, hence generalizing 
to the case of a non-circular cell. The ce lke l l  interaction of the second-order model is 
based on a more justifiable, if crude, approximation suggested by figure 14-namely, 
lumping the two cells in question into point dipoles with moments and separations 
estimated in terms of their areas. The latter is straightforward for nearest neighbours, 
leadingto (8).  

Although the present model is capable of only a limited justification by such argu- 
ments, a more systematic analysis should be possible. In particular, the functions of cell 
area could include the number of cell sides as further variables, without detracting from 
the practicality of the model. 
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